import os import sys import re import requests from sqlalchemy import select, and_, func from sqlalchemy.orm import Session from prophet import Prophet from statsmodels.tsa.arima.model import ARIMA import numpy as np import pandas as pd from datetime import date, datetime, timedelta sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from conf import db, db_schema from weather_forecast import get_weekly_precip from lib.holiday import is_korean_holiday from lib.common import load_config # DB 테이블 객체 초기화 pos = db_schema.pos ga4 = db_schema.ga4_by_date weather = db_schema.weather air = db_schema.air # config 불러오기 config = load_config() serviceKey = config['DATA_API']['serviceKey'] weight_cfg = config.get('FORECAST_WEIGHT', {}) VISITOR_CA = tuple(config['POS']['VISITOR_CA']) visitor_forecast_multiplier = weight_cfg.get('visitor_forecast_multiplier', 1.0) minTa_weight = weight_cfg.get('minTa', 1.0) maxTa_weight = weight_cfg.get('maxTa', 1.0) sumRn_weight = weight_cfg.get('sumRn', 1.0) avgRhm_weight = weight_cfg.get('avgRhm', 1.0) pm25_weight = weight_cfg.get('pm25', 1.0) is_holiday_weight = weight_cfg.get('is_holiday', 1.0) def get_date_range(start_date, end_date): return pd.date_range(start_date, end_date).to_pydatetime().tolist() def add_korean_holiday_feature(df): df['is_holiday'] = df['date'].apply(lambda d: 1 if is_korean_holiday(d.date()) else 0) return df def fix_zero_visitors_weighted(df): df = df.copy() if 'date' not in df.columns and 'ds' in df.columns: df['date'] = df['ds'] if 'pos_qty' not in df.columns and 'y' in df.columns: df['pos_qty'] = df['y'] if 'is_holiday' not in df.columns: raise ValueError("DataFrame에 'is_holiday' 컬럼이 필요합니다.") df['year_month'] = df['date'].dt.strftime('%Y-%m') monthly_means = df[df['pos_qty'] > 0].groupby(['year_month', 'is_holiday'])['pos_qty'].mean() arr = df['pos_qty'].values.copy() for i in range(len(arr)): if arr[i] == 0: ym = df.iloc[i]['year_month'] holiday_flag = df.iloc[i]['is_holiday'] mean_val = monthly_means.get((ym, holiday_flag), np.nan) arr[i] = 0 if np.isnan(mean_val) else mean_val df['pos_qty'] = arr if 'y' in df.columns: df['y'] = df['pos_qty'] df.drop(columns=['year_month'], inplace=True) return df def load_data(session, start_date, end_date): dates = get_date_range(start_date, end_date) stmt_pos = select( pos.c.date, func.sum(pos.c.qty).label('pos_qty') ).where( and_( pos.c.date >= start_date, pos.c.date <= end_date, pos.c.ca01 == '매표소', pos.c.ca03.in_(VISITOR_CA) ) ).group_by(pos.c.date) stmt_ga4 = select(ga4.c.date, ga4.c.activeUsers).where( and_(ga4.c.date >= start_date, ga4.c.date <= end_date) ) stmt_weather = select( weather.c.date, weather.c.minTa, weather.c.maxTa, weather.c.sumRn, weather.c.avgRhm ).where( and_( weather.c.date >= start_date, weather.c.date <= end_date, weather.c.stnId == 99 ) ) stmt_air = select(air.c.date, air.c.pm25).where( and_( air.c.date >= start_date, air.c.date <= end_date, air.c.station == '운정' ) ) pos_data = {row['date']: row['pos_qty'] for row in session.execute(stmt_pos).mappings().all()} ga4_data = {row['date']: row['activeUsers'] for row in session.execute(stmt_ga4).mappings().all()} weather_data = {row['date']: row for row in session.execute(stmt_weather).mappings().all()} air_data = {row['date']: row['pm25'] for row in session.execute(stmt_air).mappings().all()} records = [] for d in dates: key = d.date() if isinstance(d, datetime) else d record = { 'date': d, 'pos_qty': pos_data.get(key, 0), 'activeUsers': ga4_data.get(key, 0), 'minTa': weather_data.get(key, {}).get('minTa', 0) if weather_data.get(key) else 0, 'maxTa': weather_data.get(key, {}).get('maxTa', 0) if weather_data.get(key) else 0, 'sumRn': weather_data.get(key, {}).get('sumRn', 0) if weather_data.get(key) else 0, 'avgRhm': weather_data.get(key, {}).get('avgRhm', 0) if weather_data.get(key) else 0, 'pm25': air_data.get(key, 0) } records.append(record) df = pd.DataFrame(records) df = add_korean_holiday_feature(df) df = fix_zero_visitors_weighted(df) df['weekday'] = df['date'].dt.weekday return df def prepare_prophet_df(df): prophet_df = pd.DataFrame({ 'ds': df['date'], 'y': df['pos_qty'].astype(float), 'minTa': df['minTa'].astype(float), 'maxTa': df['maxTa'].astype(float), 'sumRn': df['sumRn'].astype(float), 'avgRhm': df['avgRhm'].astype(float), 'pm25': df['pm25'].astype(float), 'is_holiday': df['is_holiday'].astype(int) }) return prophet_df def train_and_predict_prophet(prophet_df, forecast_days=7): prophet_df = prophet_df.copy() # 결측값을 전일과 다음날의 평균치로 선형 보간 처리 for col in ['minTa', 'maxTa', 'sumRn', 'avgRhm', 'pm25', 'is_holiday']: if col in prophet_df.columns: prophet_df[col] = prophet_df[col].interpolate(method='linear', limit_direction='both') # 보간 후 남은 결측치는 0으로 처리 prophet_df.fillna({ 'minTa': 0, 'maxTa': 0, 'sumRn': 0, 'avgRhm': 0, 'pm25': 0, 'is_holiday': 0 }, inplace=True) # 가중치 적용 prophet_df['minTa'] *= minTa_weight prophet_df['maxTa'] *= maxTa_weight prophet_df['sumRn'] *= sumRn_weight prophet_df['avgRhm'] *= avgRhm_weight prophet_df['pm25'] *= pm25_weight prophet_df['is_holiday'] *= is_holiday_weight # 고정 0 방문객값 보정 prophet_df = fix_zero_visitors_weighted(prophet_df) # Prophet 모델 정의 및 학습 m = Prophet(weekly_seasonality=True, yearly_seasonality=True, daily_seasonality=False) m.add_regressor('minTa') m.add_regressor('maxTa') m.add_regressor('sumRn') m.add_regressor('avgRhm') m.add_regressor('pm25') m.add_regressor('is_holiday') m.fit(prophet_df) future = m.make_future_dataframe(periods=forecast_days) # 미래 데이터에 날씨 예보값과 가중치 적용 weekly_precip = get_weekly_precip(serviceKey) sumRn_list, minTa_list, maxTa_list, avgRhm_list = [], [], [], [] for dt in future['ds']: dt_str = dt.strftime('%Y%m%d') day_forecast = weekly_precip.get(dt_str, None) if day_forecast: sumRn_list.append(float(day_forecast.get('sumRn', 0)) * sumRn_weight) minTa_list.append(float(day_forecast.get('minTa', 0)) * minTa_weight) maxTa_list.append(float(day_forecast.get('maxTa', 0)) * maxTa_weight) avgRhm_list.append(float(day_forecast.get('avgRhm', 0)) * avgRhm_weight) else: sumRn_list.append(0) minTa_list.append(0) maxTa_list.append(0) avgRhm_list.append(0) future['sumRn'] = sumRn_list future['minTa'] = minTa_list future['maxTa'] = maxTa_list future['avgRhm'] = avgRhm_list # pm25는 마지막 과거 데이터값에 가중치 적용 last_known = prophet_df.iloc[-1] future['pm25'] = last_known['pm25'] * pm25_weight # 휴일 여부도 가중치 곱해서 적용 future['is_holiday'] = future['ds'].apply(lambda d: 1 if is_korean_holiday(d.date()) else 0) * is_holiday_weight forecast = m.predict(future) # 방문객 예측값에 multiplier 적용 및 정수형 변환 forecast['yhat'] = (forecast['yhat'] * visitor_forecast_multiplier).round().astype(int) forecast['yhat_lower'] = (forecast['yhat_lower'] * visitor_forecast_multiplier).round().astype(int) forecast['yhat_upper'] = (forecast['yhat_upper'] * visitor_forecast_multiplier).round().astype(int) # 결과 CSV 저장 output_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'data', 'prophet_result.csv')) os.makedirs(os.path.dirname(output_path), exist_ok=True) df_to_save = forecast[['ds', 'yhat']].copy() df_to_save.columns = ['date', 'visitor_forecast'] df_to_save['date'] = df_to_save['date'].dt.strftime("%Y-%m-%d") today_str = date.today().strftime("%Y-%m-%d") df_to_save = df_to_save[df_to_save['date'] >= today_str] df_to_save.to_csv(output_path, index=False) return forecast def train_and_predict_arima(ts, forecast_days=7): model = ARIMA(ts, order=(5,1,0)) model_fit = model.fit() forecast = model_fit.forecast(steps=forecast_days) return forecast def train_and_predict_rf(df, forecast_days=7): from sklearn.ensemble import RandomForestRegressor df = df.copy() df['weekday'] = df['date'].dt.weekday X = df[['weekday', 'minTa', 'maxTa', 'sumRn', 'avgRhm', 'pm25']] y = df['pos_qty'] model = RandomForestRegressor(n_estimators=100, random_state=42) model.fit(X, y) future_dates = pd.date_range(df['date'].max() + timedelta(days=1), periods=forecast_days) future_df = pd.DataFrame({ 'date': future_dates, 'weekday': future_dates.weekday, 'minTa': 0, 'maxTa': 0, 'sumRn': 0, 'avgRhm': 0, 'pm25': 0 }) future_df['pos_qty'] = model.predict(future_df[['weekday', 'minTa', 'maxTa', 'sumRn', 'avgRhm', 'pm25']]) return future_df def main(): today = datetime.today().date() start_date = today - timedelta(days=365) end_date = today with Session(db.engine) as session: df = load_data(session, start_date, end_date) prophet_df = prepare_prophet_df(df) forecast_days = 7 forecast = train_and_predict_prophet(prophet_df, forecast_days) forecast['yhat'] = forecast['yhat'].round().astype(int) forecast['yhat_lower'] = forecast['yhat_lower'].round().astype(int) forecast['yhat_upper'] = forecast['yhat_upper'].round().astype(int) weekly_precip = get_weekly_precip(serviceKey) output_df = forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(10).copy() output_df.columns = ['날짜', '예상 방문객', '하한', '상한'] print("이번 주 강수 예보:") for dt_str, val in weekly_precip.items(): print(f"{dt_str}: 강수량={val['sumRn']:.1f}mm, 최저기온={val['minTa']}, 최고기온={val['maxTa']}, 습도={val['avgRhm']:.1f}%") print("\n예측 방문객:") print(output_df.to_string(index=False)) if __name__ == '__main__': main()