가중치 반영하여 계산하도록 수정

This commit is contained in:
2025-07-09 17:35:00 +09:00
parent ea94532cd7
commit 387aa2398f

View File

@ -23,14 +23,22 @@ ga4 = db_schema.ga4_by_date
weather = db_schema.weather
air = db_schema.air
# config 불러오기
config = load_config()
serviceKey = config['DATA_API']['serviceKey']
weight_cfg = config.get('FORECAST_WEIGHT', {})
VISITOR_CA = tuple(config['POS']['VISITOR_CA'])
visitor_forecast_multiplier = weight_cfg.get('visitor_forecast_multiplier', 1.0)
minTa_weight = weight_cfg.get('minTa', 1.0)
maxTa_weight = weight_cfg.get('maxTa', 1.0)
sumRn_weight = weight_cfg.get('sumRn', 1.0)
avgRhm_weight = weight_cfg.get('avgRhm', 1.0)
pm25_weight = weight_cfg.get('pm25', 1.0)
is_holiday_weight = weight_cfg.get('is_holiday', 1.0)
# --- 데이터 로딩 및 전처리 ---
def get_date_range(start_date, end_date):
return pd.date_range(start_date, end_date).to_pydatetime().tolist()
@ -140,7 +148,19 @@ def prepare_prophet_df(df):
return prophet_df
def train_and_predict_prophet(prophet_df, forecast_days=7):
# 가중치 적용 - 훈련 데이터의 기상/환경 변수 컬럼별 곱하기
prophet_df = prophet_df.copy()
prophet_df['minTa'] *= minTa_weight
prophet_df['maxTa'] *= maxTa_weight
prophet_df['sumRn'] *= sumRn_weight
prophet_df['avgRhm'] *= avgRhm_weight
prophet_df['pm25'] *= pm25_weight
prophet_df['is_holiday'] *= is_holiday_weight
# 기존 fix_zero_visitors_weighted 함수 호출 (필요 시)
prophet_df = fix_zero_visitors_weighted(prophet_df)
# 결측치 처리
prophet_df.fillna({
'minTa': 0,
'maxTa': 0,
@ -160,22 +180,22 @@ def train_and_predict_prophet(prophet_df, forecast_days=7):
m.fit(prophet_df)
future = m.make_future_dataframe(periods=forecast_days)
future_dates = future['ds'].dt.strftime('%Y%m%d').tolist()
weekly_precip = get_weekly_precip(serviceKey) # {'YYYYMMDD': {'sumRn': x, 'minTa': y, 'maxTa': z, 'avgRhm': w}, ...}
# 미래 데이터에 날씨 예보 값 가져와서 가중치 적용
weekly_precip = get_weekly_precip(serviceKey)
# 미래 데이터에 강수량 및 기온/습도 반영
sumRn_list = []
minTa_list = []
maxTa_list = []
avgRhm_list = []
for dt_str in future_dates:
for dt in future['ds']:
dt_str = dt.strftime('%Y%m%d')
day_forecast = weekly_precip.get(dt_str, None)
if day_forecast:
sumRn_list.append(float(day_forecast.get('sumRn', 0)))
minTa_list.append(float(day_forecast.get('minTa', 0)))
maxTa_list.append(float(day_forecast.get('maxTa', 0)))
avgRhm_list.append(float(day_forecast.get('avgRhm', 0)))
sumRn_list.append(float(day_forecast.get('sumRn', 0)) * sumRn_weight)
minTa_list.append(float(day_forecast.get('minTa', 0)) * minTa_weight)
maxTa_list.append(float(day_forecast.get('maxTa', 0)) * maxTa_weight)
avgRhm_list.append(float(day_forecast.get('avgRhm', 0)) * avgRhm_weight)
else:
sumRn_list.append(0)
minTa_list.append(0)
@ -187,16 +207,21 @@ def train_and_predict_prophet(prophet_df, forecast_days=7):
future['maxTa'] = maxTa_list
future['avgRhm'] = avgRhm_list
# pm25는 과거 마지막 데이터 복사
# pm25는 과거 마지막 데이터 * 가중치 적용
last_known = prophet_df.iloc[-1]
future['pm25'] = last_known['pm25']
future['pm25'] = last_known['pm25'] * pm25_weight
# is_holiday 계산
future['is_holiday'] = future['ds'].apply(lambda d: 1 if is_korean_holiday(d.date()) else 0)
# 휴일 여부도 가중치 곱해서 적용
future['is_holiday'] = future['ds'].apply(lambda d: 1 if is_korean_holiday(d.date()) else 0) * is_holiday_weight
forecast = m.predict(future)
# 예측 결과 저장
# 최종 방문객 예측에 multiplier 곱하기
forecast['yhat'] = (forecast['yhat'] * visitor_forecast_multiplier).round().astype(int)
forecast['yhat_lower'] = (forecast['yhat_lower'] * visitor_forecast_multiplier).round().astype(int)
forecast['yhat_upper'] = (forecast['yhat_upper'] * visitor_forecast_multiplier).round().astype(int)
# csv 저장 및 반환
output_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'data', 'prophet_result.csv'))
os.makedirs(os.path.dirname(output_path), exist_ok=True)
@ -204,13 +229,9 @@ def train_and_predict_prophet(prophet_df, forecast_days=7):
df_to_save.columns = ['date', 'visitor_forecast']
df_to_save['date'] = df_to_save['date'].dt.strftime("%Y-%m-%d")
# 오늘 날짜 이후 데이터만 필터링
today_str = date.today().strftime("%Y-%m-%d")
df_to_save = df_to_save[df_to_save['date'] >= today_str]
# visitor_forecast를 정수로 변환
df_to_save['visitor_forecast'] = df_to_save['visitor_forecast'].round().astype(int)
df_to_save.to_csv(output_path, index=False)
return forecast